18 September 2019

The Atlantic: A Famous Argument Against Free Will Has Been Debunked

The Bereitschaftspotential was never meant to get entangled in free-will debates. If anything, it was pursued to show that the brain has a will of sorts. The two German scientists who discovered it, a young neurologist named Hans Helmut Kornhuber and his doctoral student Lüder Deecke, had grown frustrated with their era’s scientific approach to the brain as a passive machine that merely produces thoughts and actions in response to the outside world. Over lunch in 1964, the pair decided that they would figure out how the brain works to spontaneously generate an action. “Kornhuber and I believed in free will,” says Deecke, who is now 81 and lives in Vienna. [...]

What the Bereitschaftspotential actually meant, however, was anyone’s guess. Its rising pattern appeared to reflect the dominoes of neural activity falling one by one on a track toward a person doing something. Scientists explained the Bereitschaftspotential as the electrophysiological sign of planning and initiating an action. Baked into that idea was the implicit assumption that the Bereitschaftspotential causes that action. The assumption was so natural, in fact, no one second-guessed it—or tested it.

Libet, a researcher at the University of California at San Francisco, questioned the Bereitschaftspotential in a different way. Why does it take half a second or so between deciding to tap a finger and actually doing it? He repeated Kornhuber and Deecke’s experiment, but asked his participants to watch a clocklike apparatus so that they could remember the moment they made a decision. The results showed that while the Bereitschaftspotential started to rise about 500 milliseconds before the participants performed an action, they reported their decision to take that action only about 150 milliseconds beforehand. “The brain evidently ‘decides’ to initiate the act” before a person is even aware that decision has taken place, Libet concluded. [...]

In a new study under review for publication in the Proceedings of the National Academy of Sciences, Schurger and two Princeton researchers repeated a version of Libet’s experiment. To avoid unintentionally cherry-picking brain noise, they included a control condition in which people didn’t move at all. An artificial-intelligence classifier allowed them to find at what point brain activity in the two conditions diverged. If Libet was right, that should have happened at 500 milliseconds before the movement. But the algorithm couldn’t tell any difference until about only 150 milliseconds before the movement, the time people reported making decisions in Libet’s original experiment.

No comments:

Post a Comment